One-pole (6 dB/oct) lowpass filter with unitary DC gain, separate attack and decay time constants, and sticky target-reach threshold.
This is better suited to implement smoothing than bw_lp1.
Version: 1.2.0
License:
Included in Brickworks, which is:
Here you can download one or more example VST3 plugins for Windows, macOS and Linux. Source code of the audio engine(s) is included in the archive(s).
Description | Link |
---|---|
One-pole lowpass filter | Download |
Module type: DSP
typedef struct bw_one_pole_coeffs bw_one_pole_coeffs;
Coefficients and related.
typedef struct bw_one_pole_state bw_one_pole_state;
Internal state and related.
typedef enum {
bw_one_pole_sticky_mode_abs,
bw_one_pole_sticky_mode_rel
} bw_one_pole_sticky_mode;
Distance metrics for sticky behavior:
bw_one_pole_sticky_mode_abs
: absolute difference (|out
- in
|);bw_one_pole_sticky_mode_rel
: relative difference with respect to input (|out
- in
| / |in
|).static inline void bw_one_pole_init(
bw_one_pole_coeffs * BW_RESTRICT coeffs);
Initializes input parameter values in coeffs
.
static inline void bw_one_pole_set_sample_rate(
bw_one_pole_coeffs * BW_RESTRICT coeffs,
float sample_rate);
Sets the sample_rate
(Hz) value in coeffs
.
static inline void bw_one_pole_reset_coeffs(
bw_one_pole_coeffs * BW_RESTRICT coeffs);
Resets coefficients in coeffs
to assume their target values.
static inline float bw_one_pole_reset_state(
const bw_one_pole_coeffs * BW_RESTRICT coeffs,
bw_one_pole_state * BW_RESTRICT state,
float x_0);
Resets the given state
to its initial values using the given coeffs
and the initial input value x_0
.
Returns the corresponding initial output value.
static inline void bw_one_pole_reset_state_multi(
const bw_one_pole_coeffs * BW_RESTRICT coeffs,
bw_one_pole_state * BW_RESTRICT const * BW_RESTRICT state,
const float * x_0,
float * y_0,
size_t n_channels);
Resets each of the n_channels
state
s to its initial values using the given coeffs
and the corresponding initial input value in the x_0
array.
The corresponding initial output values are written into the y_0
array, if not BW_NULL
.
static inline void bw_one_pole_update_coeffs_ctrl(
bw_one_pole_coeffs * BW_RESTRICT coeffs);
Triggers control-rate update of coefficients in coeffs
.
static inline void bw_one_pole_update_coeffs_audio(
bw_one_pole_coeffs * BW_RESTRICT coeffs);
Triggers audio-rate update of coefficients in coeffs
.
static inline float bw_one_pole_process1(
const bw_one_pole_coeffs * BW_RESTRICT coeffs,
bw_one_pole_state * BW_RESTRICT state,
float x);
static inline float bw_one_pole_process1_sticky_abs(
const bw_one_pole_coeffs * BW_RESTRICT coeffs,
bw_one_pole_state * BW_RESTRICT state,
float x);
static inline float bw_one_pole_process1_sticky_rel(
const bw_one_pole_coeffs * BW_RESTRICT coeffs,
bw_one_pole_state * BW_RESTRICT state,
float x);
static inline float bw_one_pole_process1_asym(
const bw_one_pole_coeffs * BW_RESTRICT coeffs,
bw_one_pole_state * BW_RESTRICT state,
float x);
static inline float bw_one_pole_process1_asym_sticky_abs(
const bw_one_pole_coeffs * BW_RESTRICT coeffs,
bw_one_pole_state * BW_RESTRICT state,
float x);
static inline float bw_one_pole_process1_asym_sticky_rel(
const bw_one_pole_coeffs * BW_RESTRICT coeffs,
bw_one_pole_state * BW_RESTRICT state,
float x);
These functions process one input sample x
using coeffs
, while using and updating state
. They return the corresponding output sample.
In particular:
bw_one_pole_process1()
assumes that upgoing and downgoing cutoff/tau are equal and the target-reach threshold is 0.f
;bw_one_pole_process1_sticky_abs()
assumes that upgoing and downgoing cutoff/tau are equal, that the target-reach threshold is not 0.f
, and that the distance metric for sticky behavior is set to bw_one_pole_sticky_mode_abs
;bw_one_pole_process1_sticky_rel()
assumes that upgoing and downgoing cutoff/tau are equal, that the target-reach threshold is not 0.f
, and that the distance metric for sticky behavior is set to bw_one_pole_sticky_mode_rel
;bw_one_pole_process1_asym()
assumes that upgoing and downgoing cutoff/tau are different and the target-reach threshold is 0.f
;bw_one_pole_process1_asym_sticky_abs()
assumes that upgoing and downgoing cutoff/tau are different, that the target-reach threshold is not 0.f
, and that the distance metric for sticky behavior is set to bw_one_pole_sticky_mode_abs
;bw_one_pole_process1_asym_sticky_rel()
assumes that upgoing and downgoing cutoff/tau are different, that the target-reach threshold is not 0.f
, and that the distance metric for sticky behavior is set to bw_one_pole_sticky_mode_rel
.Such assumptions are unchecked even for debugging purposes.
static inline void bw_one_pole_process(
bw_one_pole_coeffs * BW_RESTRICT coeffs,
bw_one_pole_state * BW_RESTRICT state,
const float * x,
float * y,
size_t n_samples);
Processes the first n_samples
of the input buffer x
and fills the first n_samples
of the output buffer y
, while using and updating both coeffs
and state
(control and audio rate).
y
may be BW_NULL
.
static inline void bw_one_pole_process_multi(
bw_one_pole_coeffs * BW_RESTRICT coeffs,
bw_one_pole_state * BW_RESTRICT const * BW_RESTRICT state,
const float * const * x,
float * const * y,
size_t n_channels,
size_t n_samples);
Processes the first n_samples
of the n_channels
input buffers x
and fills the first n_samples
of the n_channels
output buffers y
, while using and updating both the common coeffs
and each of the n_channels
state
s (control and audio rate).
y
or any element of y
may be BW_NULL
.
static inline void bw_one_pole_set_cutoff(
bw_one_pole_coeffs * BW_RESTRICT coeffs,
float value);
Sets both the upgoing (attack) and downgoing (decay) cutoff frequency to the given value
(Hz) in coeffs
.
This is equivalent to calling both bw_one_pole_set_cutoff_up()
and bw_one_pole_set_cutoff_down()
with same coeffs
and value
or calling bw_one_pole_set_tau()
with same coeffs
and value = 1 / (2 * pi * value
) (net of numerical errors).
value
must be non-negative.
Default value: INFINITY
.
static inline void bw_one_pole_set_cutoff_up(
bw_one_pole_coeffs * BW_RESTRICT coeffs,
float value);
Sets the upgoing (attack) cutoff frequency to the given value
(Hz) in coeffs
.
This is equivalent to calling bw_one_pole_set_tau_up()
with same coeffs
and value = 1 / (2 * pi * value
) (net of numerical errors).
value
must be non-negative.
Default value: INFINITY
.
static inline void bw_one_pole_set_cutoff_down(
bw_one_pole_coeffs * BW_RESTRICT coeffs,
float value);
Sets the downgoing (attack) cutoff frequency to the given value
(Hz) in coeffs
.
This is equivalent to calling bw_one_pole_set_tau_down()
with same coeffs
and value = 1 / (2 * pi * value
) (net of numerical errors).
value
must be non-negative.
Default value: INFINITY
.
static inline void bw_one_pole_set_tau(
bw_one_pole_coeffs * BW_RESTRICT coeffs,
float value);
Sets both the upgoing (attack) and downgoing (decay) time constant to the given value
(s) in coeffs
.
This is equivalent to calling both bw_one_pole_set_tau_up()
and bw_one_pole_set_tau_down()
with same coeffs
and value
or calling bw_one_pole_set_cutoff()
with same coeffs
and value = 1 / (2 * pi * value
) (net of numerical errors).
value
must be non-negative.
Default value: 0.f
.
static inline void bw_one_pole_set_tau_up(
bw_one_pole_coeffs * BW_RESTRICT coeffs,
float value);
Sets the upgoing (attack) time constant to the given value
(s) in coeffs
.
This is equivalent to calling bw_one_pole_set_cutoff_up()
with same coeffs
and value = 1 / (2 * pi * value
) (net of numerical errors).
value
must be non-negative.
Default value: 0.f
.
static inline void bw_one_pole_set_tau_down(
bw_one_pole_coeffs * BW_RESTRICT coeffs,
float value);
Sets the downgoing (decay) time constant to the given value
(s) in coeffs
.
This is equivalent to calling bw_one_pole_set_cutoff_down()
with same coeffs
and value = 1 / (2 * pi * value
) (net of numerical errors).
value
must be non-negative.
Default value: 0.f
.
static inline void bw_one_pole_set_sticky_thresh(
bw_one_pole_coeffs * BW_RESTRICT coeffs,
float value);
Sets the target-reach threshold specified by value
in coeffs
.
When the difference between the output and the input would fall under such threshold according to the current distance metric (see bw_one_pole_set_sticky_mode()
), the output is forcefully set to be equal to the input value.
Valid range: [0.f
, 1e18f
].
Default value: 0.f
.
static inline void bw_one_pole_set_sticky_mode(
bw_one_pole_coeffs * BW_RESTRICT coeffs,
bw_one_pole_sticky_mode value);
Sets the current distance metric for sticky behavior to value
in coeffs
.
Default value: bw_one_pole_sticky_mode_abs
.
static inline float bw_one_pole_get_sticky_thresh(
const bw_one_pole_coeffs * BW_RESTRICT coeffs);
Returns the current target-reach threshold in coeffs
.
static inline bw_one_pole_sticky_mode bw_one_pole_get_sticky_mode(
const bw_one_pole_coeffs * BW_RESTRICT coeffs);
Returns the current distance metric for sticky behavior in coeffs
.
static inline float bw_one_pole_get_y_z1(
const bw_one_pole_state * BW_RESTRICT state);
Returns the last output sample as stored in state
.
static inline char bw_one_pole_coeffs_is_valid(
const bw_one_pole_coeffs * BW_RESTRICT coeffs);
Tries to determine whether coeffs
is valid and returns non-0
if it seems to be the case and 0
if it is certainly not. False positives are possible, false negatives are not.
coeffs
must at least point to a readable memory block of size greater than or equal to that of bw_one_pole_coeffs
.
static inline char bw_one_pole_state_is_valid(
const bw_one_pole_coeffs * BW_RESTRICT coeffs,
const bw_one_pole_state * BW_RESTRICT state);
Tries to determine whether state
is valid and returns non-0
if it seems to be the case and 0
if it is certainly not. False positives are possible, false negatives are not.
If coeffs
is not BW_NULL
extra cross-checks might be performed (state
is supposed to be associated to coeffs
).
state
must at least point to a readable memory block of size greater than or equal to that of bw_one_pole_state
.
template<size_t N_CHANNELS>
class OnePole {
public:
OnePole();
void setSampleRate(
float sampleRate);
void reset(
float x0 = 0.f,
float * BW_RESTRICT y0 = nullptr);
# ifndef BW_CXX_NO_ARRAY
void reset(
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0);
# endif
void reset(
const float * x0,
float * y0 = nullptr);
# ifndef BW_CXX_NO_ARRAY
void reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0 = nullptr);
# endif
void process(
const float * const * x,
float * const * y,
size_t nSamples);
# ifndef BW_CXX_NO_ARRAY
void process(
std::array<const float *, N_CHANNELS> x,
std::array<float *, N_CHANNELS> y,
size_t nSamples);
# endif
void setCutoff(
float value);
void setCutoffUp(
float value);
void setCutoffDown(
float value);
void setTau(
float value);
void setTauUp(
float value);
void setTauDown(
float value);
void setStickyThresh(
float value);
void setStickyMode(
bw_one_pole_sticky_mode value);
float getStickyThresh();
bw_one_pole_sticky_mode getStickyMode();
float getYZ1(
size_t channel);
...
}
bw_one_pole_get_sticky_thresh()
and bw_one_pole_get_sticky_mode()
and related C++ API.BW_INCLUDE_WITH_QUOTES
, BW_NO_CXX
, and BW_CXX_NO_EXTERN_C
.bw_one_pole_process()
to bw_one_pole_process_multi()
.bw_one_pole_process_multi()
to ensure that buffers used for both input and output appear at the same channel indices.BW_NULL
and BW_CXX_NO_ARRAY
.bw_one_pole_reset_state_multi()
and updated C++ API in this regard.bw_one_pole_reset_state()
returns the initial output value.reset()
functions taking arrays as arguments.size_t
instead of BW_SIZE_T
.const
and BW_RESTRICT
specifiers to input arguments and implementation.process()
function taking C-style arrays as arguments.coeffs
argument to bw_one_pole_state_is_valid()
.bw_one_pole_process()
and bw_one_pole_process_multi()
now use BW_SIZE_T
to count samples and channels.bw_one_pole_process_multi()
.